Information for Applicants

Content Page
1 Introduction ...2
2 Eligibility To Sit For Examination...2
3 Fees ..2
4 Dates Of Examination ..3
5 Venue ..3
6 Application ...3
7 Structure Of Examination ...3
8 Final Results and Notification...4
9 Examination Appeals..4
10 Review Courses ...4
11 Refund Of Fees...4

Annex A: FORMAT AND SYLLABUS, READING LISTS AND QUESTIONS FROM PAST YEAR PAPERS

I Fundamentals Of Engineering Examination (Civil)5
 Recommended Reading List (Civil)
 Questions From Past Year Papers (Civil)

II Fundamentals Of Engineering Examination (Electrical).......................20
 Recommended Reading List (Electrical)
 Questions From Past Year Papers (Electrical)

III Fundamentals Of Engineering Examination (Mechanical)...............29
 Questions From Past Year Papers (Mechanical)
Professional Engineers Registration Examination
Fundamentals of Engineering Examination 2015
Information for Applicants

1 INTRODUCTION

The mission of the Professional Engineers Board is to safeguard life, property, and welfare of the public by setting and maintaining high standards for registering professional engineers and by regulating and advancing the practice of professional engineering.

The Professional Engineers Board registers professional engineers in the branches of civil, electrical and mechanical engineering. A person applying for registration as a professional engineer to the Professional Engineers Board is required to hold an approved degree or qualification listed in the Professional Engineers (Approved Qualifications) Notification and acquired not less than 4 years of relevant practical experience. He is also required to sit and pass examinations prescribed by the Board. The applicant is required to sit and pass the Fundamentals of Engineering Examination and following that, to sit and pass the Practice of Professional Engineering Examination. In addition, the applicant is required to attend an interview.

The following sections set out the requirements and details for the Fundamentals of Engineering Examination 2015 while details on other application requirements are available on the PEB website at www.peb.gov.sg.

2 ELIGIBILITY TO SIT FOR EXAMINATION

The Fundamentals of Engineering Examination tests an applicant’s knowledge of fundamental engineering subjects in civil, electrical or mechanical engineering. A person may apply to sit for the Fundamentals of Engineering Examination after he has obtained an approved degree or qualification listed in the Professional Engineers (Approved Qualifications) Notification or has proper and recognised academic qualifications in engineering accepted by the Board.

3 FEES

The fees for an application to sit for the Fundamentals of Engineering Examination is $350.

4 DATES OF EXAMINATION

The dates for the Fundamentals of Engineering Examination 2015 are:
Professional Engineers Registration Examination FEE 2015

a) Civil Engineering – 29 September 2015
b) Electrical Engineering – 30 September 2015
c) Mechanical Engineering – 30 September 2015

5 VENUE

Details of the venue would be given to successful applicants at a later date.

6 APPLICATION

Application and payment shall be made online at PEB website (http://www.peb.gov.sg) no later than 30 June 2015, and required documents are to be submitted to PEB within a week after online application. Applicants are advised to send in their applications early to allow time for processing. They would be informed of the status of their applications and other details by post at least two weeks before the examinations.

7 STRUCTURE OF EXAMINATION

A summary of the structure of the Fundamentals of Engineering Examination is shown in the table below. The examination is ‘open book’ and further details are given in Annex A: Format and Syllabus, Reading Lists and Questions From Past Year Papers.

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Time Allocated</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEE Part 1 Core engineering subjects in civil/mechanical/electrical engineering</td>
<td>*3 hours & 10 mins (9.00 am – 12.10 pm)</td>
<td>• 40 Multiple Choice Questions (MCQ)</td>
</tr>
</tbody>
</table>
| FEE Part 2 Core ELECTIVE subjects in civil/electrical/mechanical engineering | *3 hours & 10 minutes (2.00 pm – 5.10 pm) | • Answer 5 out of 9 questions (civil)
• Answer 5 out of 7 questions (electrical, mechanical) |

* includes 10 minutes for reading the exam questions, etc

8 FINAL RESULTS AND NOTIFICATION

Examination results will be given to candidates on a Pass/Fail basis. No examination scores or marks will be given to candidates. Examination results will be mailed to the candidates within twelve weeks after the examination.
9 EXAMINATION APPEALS

A candidate who has failed the examination may submit a written appeal to review his/her performance together with a payment of $25. The appeal is to be made within 2 weeks after the receipt of results and late appeals would not be considered. The result of the appeal/review will be sent by written mail to the appeal candidate. The appeal candidate would not be allowed to review his examination paper.

10 REVIEW COURSES

The Board does not endorse any review courses or materials provided as study aides.

11 REFUND OF FEES

Where an applicant who has been accepted is unable to sit for the examination subsequently, the Board may, at its discretion, refund $100 to the applicant if the applicant informs the Board at least a week before the examination or submit an original medical certificate by mail within 2 weeks after the examination. Scanned copy of medical certificates submitted via email will not be accepted. There will be no refund if the applicant informs the Board less than a week before the examination.
Annex A: FORMAT AND SYLLABUS, READING LISTS AND QUESTIONS FROM PAST YEAR PAPERS

I Fundamentals Of Engineering Examination (Civil)

The examination will focus on testing the fundamentals of civil engineering. The 6-hour examination will comprise two parts. Part 1 catering for breadth, will comprise questions on core civil engineering subjects, typical of courses covered during the 1st and 2nd year of a 4-year civil engineering undergraduate course. Part 2 catering for depth, will comprise more core and elective civil engineering courses covered during the 3rd and 4th year of a 4-year civil engineering undergraduate course.

(Both BS and EC codes can be used for this examination.)

Format

- **FEE Part 1 (Civil) (3 hours & 10 mins) - 40 MCQ questions**
 - CE 101 Mechanics of Materials
 - CE 102 Structural Mechanics
 - CE 103 Structural Analysis
 - CE 104 Soil Mechanics
 - CE 105 Fluid Mechanics

- **FEE Part 2 (Civil) (3 hours & 10 mins) - 5 out of 9 questions**
 - CE 201 Reinforced and Prestressed Concrete Structures (2 Qs)
 - CE 202 Steel and Composite Structures (2 Qs)
 - CE 203 Geotechnical Engineering (2 Qs)
 - CE 204 Transportation (1 Q)
 - CE 205 Hydraulics and Hydrology (1 Q)
 - CE 206 Environmental Engineering (1 Q)

Syllabus

- **CE 101 Mechanics of Materials**
 - Mechanics of Materials
 Strength, stiffness and deformability; Stress-strain relations; ductility and brittle fracture; time-dependent properties; creep, creep rupture; relaxation; cyclic load behaviour.

- **Concrete Technology**
 Concrete-making materials, properties of fresh and hardened concrete, mixing, placing, and curing, mix design, destructive and
non-destructive tests, quality control, durability, and special concrete.

- **Steel**
 Basic metallurgy, mechanical properties and applications, welding technology and corrosion.

- **CE 102 Structural Mechanics**

 - **Structural Mechanics**
 Statics and kinetics of particles, equilibrium of rigid bodies, kinematics and plane motion of rigid bodies, analysis of simple trusses and beams, analysis of structural members subjected to tension, compression, torsion, and bending, including such fundamental concepts as stress, strain, and elastic behaviour. Bar forces in compound and complex trusses. Bending moment, shear and axial forces of beams and frames.

- **CE 103 Structural Analysis**

 - **Structural Analysis**

- **CE 104 Soil Mechanics**

 - Basic geology, unified soil classification system, mechanical properties, effective stress principle, shear strength, compressibility, and seepage and consolidation; Mohr-Coulomb failure criterion (drained and undrained), settlement calculations, rate of consolidation using classical Terzaghi theory.

- **CE 105 Fluid Mechanics**

 - **Fluid Statics**
 Fluid properties; hydrostatic pressure and thrust; buoyancy; stability of floating bodies.

 - **Fluid Motion**
 Continuity equations; Bernoulli’s equation; linear momentum equation.
• **Similitude**
 Dimensional analysis; design of hydraulic models.

• **CE 201 Reinforced and Prestressed Concrete Structures**

 • **RC Design**

 • **Prestressed Concrete Design**
 Basic concepts of prestressing. Materials and prestressing systems. Prestressed losses and time dependent deformation. Behaviour and design of members subject to flexure, shear and combined axial and bending action.

• **CE 202 Steel and Composite Structures**

 • **Steel Design**

 • **Composite (Steel-Concrete) Design**
 Structural modeling and design concepts. Moment capacity and shear resistance, full and partial connection of composite beams. Design of composite slab. Design of composite columns.

• **CE 203 Geotechnical Engineering**

 • **Slope Stability and Earth Retaining Structures**
 Introduction to slope stability and earth retaining structures; slopes and embankments; earth pressure and retaining structures; deep excavations; calculation of active and passive earth pressures; design considerations pertaining to deep excavations.

 • **Foundation Engineering**
Site investigation and interpretation of soil reports; shallow foundations and deep foundations; selection of appropriate foundation type; capacity and settlement requirements.

- **CE 204 Transportation**
 - **Transportation Engineering**
 Transportation systems, planning and management; geometric design of roads and intersections; design of flexible and rigid pavements.
 - **Traffic Engineering**
 Traffic flow studies; traffic data analysis; traffic management; highway and intersection capacity; traffic signal control. Parking.

- **CE 205 Hydraulics and Hydrology**
 - **Hydraulics**
 Friction and minor losses in pipe flow; pipe and pump systems; pipe network analysis; open channel flow; uniform flow, Manning's equation; critical flow; energy and momentum principles; hydraulic jumps; gradually varied flows, backwater computation.
 - **Hydrology**
 Processes in the hydrologic cycle: basic meteorology, rainfall precipitation, evaporation and transpiration, infiltration, subsurface flow, surface runoff, streamflow measurement and hydrograph analysis; unit hydrograph principles and applications; frequency analysis of rainfall or flood data; reservoir and channel flood routing; urban storm drainage design, flood peak estimation.

- **CE 206 Environmental Engineering**
 - **Environmental Engineering**
 Basic physical, chemical and biological water quality parameters; physical, chemical, and biological processes for water and wastewater treatment; water treatment principles and design; water distribution systems; wastewater collection and pumping systems; wastewater treatment design; pretreatment, primary, secondary, tertiary treatment, and anaerobic digestion.
Recommended Reading List for Civil Engineering

FEE Part 1 (Civil)

CE101 Mechanics of Materials

CE120 Structural Mechanics

CE103 Structural Analysis

CE104 Soil Mechanics

CE105 Fluid Mechanics

FEE Part 2 (Civil)

CE201 Reinforced and Prestressed Concrete Structures

CE202 Steel and Composite Structures

CE203 Geotechnical Engineering

CE204 Transportation

CE205 Hydraulics and Hydrology

CE206 Environmental Engineering
Questions From Past Year Papers for Fundamentals Of Engineering
Examination Part 1 (Civil)
(Actual paper comprises 40 Multiple Choice Questions (MCQ) of 2.5 marks each. Answer all questions.)

1. A steel bar comprises three sections of three cross sections as shown in Fig. Q1. The diameters of parts AB, BC and CD are 25 mm, 15 mm and 35 mm respectively. The bar is subjected to an axial tensile force of 5 kN. If Young’s modulus of steel is 200 kN/mm², and the elongations of the three sections of the bars are Δ_1, Δ_2 and Δ_3 respectively, calculate the ratio of the largest to the smallest of these three elongations.

(a) 1.96
(b) 2.33
(c) 5.44
(d) 2.77

![Fig.Q1](image)

2. Three plane trusses are shown in Fig.Q2. The statical determinacy of the trusses, (1), (2) and (3) are respectively:
(a) determinate, indeterminate, unstable
(b) determinate, determinate, unstable
(c) determinate, indeterminate, determinate
(d) indeterminate, indeterminate, determinate

![Fig.Q2](image)
3. The static indeterminacy of the beams, (1), (2), (3) and (4) shown in Fig.Q3 are respectively:

(a) 1, 4, 5, 1
(b) 2, 4, 5, 2
(c) 1, 4, 5, 2
(d) 1, 5, 4, 1

![Fig.Q3](image)

4. A reinforced concrete column shown in Fig.Q4 supports a load of 10 kN. The load is shared between the steel reinforcement and the concrete. The cross-sectional areas and Young’s moduli are:

\[A_c = 1 \times 10^4 \text{ mm}^2 \] and \[E_c = 20 \text{ kN/mm}^2 \]

\[A_s = 200 \text{ mm}^2 \] and \[E_s = 210 \text{ kN/mm}^2 \]

What is the force carried by the steel reinforcement?

(a) 1.96 kN
(b) 2.74 kN
(c) 2.96 kN
(d) 1.74 kN

![Fig.Q4](image)
5. If seawater is used in place of potable water to cast OPC concrete, the effect is to
 1. increase its strength;
 2. reduce its strength;
 3. retard setting;
 4. decrease its durability.

 Of the above,
 (a) 1 and 3 are correct
 (b) 2 and 3 are correct
 (c) 2 and 4 are correct
 (d) 1 and 4 are correct

6. Find the position at which the maximum upward deflection for this beam with an overhang as shown in Fig.Q6 occurs.

 (a) L/4 from A
 (b) L/√3 from A
 (c) L/2 from A
 (d) 2L/√3 from A

![Fig.Q6](image)

7. A river is 3m deep and the river bed consists of a thick deposit of clay with a saturated unit weight of 20kN/m³. What is the effective stress of the clay layer at a depth of 3m below the river bed level?

 (a) 30 kN/m²
 (b) 60 kN/m²
 (c) 90 kN/m²
 (d) 120 kN/m²
8. During the site investigation for a deep foundation design, you discover in the borehole a layer of soft clay 5m deep where you had expected a hard stratum at the estimated depth of pile toe. Which of the following action would you take?

(a) Bore an extra 5m deeper than the original plan
(b) Stop boring and move to the next borehole location
(c) Continue boring until stronger soil is found
(d) Abandon the site

9. In the figure below, what is the gauge pressure of air inside the closed container?

(a) 19,620 N/m2
(b) 13,873 N/m2
(c) 16,991 N/m2
(d) Cannot be determined

10. A 1:20 scale river model is designed based on Froude number similarity. What is the prototype flow velocity which corresponds to a model measured velocity of 0.5 m/s? Given Froude number $F_r = \frac{V}{\sqrt{gL}}$

(a) 10 m/s
(b) 158.1 m/s
(c) 2.24 m/s
(d) None of the above
Q1.
To facilitate excavation for a new underground MRT station, a steel strutting and waling system together with concrete diaphragm wall are to be used for its construction. The designed strut force to be transmitted to the concrete wall is 3500 kN as shown in Figure Q1.

(a) Calculate the bearing and buckling resistances of the unstiffened web of the waler in the strut-waler connection. The sizes of the strut and waler as well as the strut-waler connection details are indicated clearly in the figure.

(b) Determine whether the unstiffened web of the waler is adequate to transfer the design strut force or not. Propose an effective strengthening scheme if it is inadequate. Detailed design of the strengthening scheme is not required.

You may assume that the strut is not at the end or near the end of the waler. State clearly your other design assumptions, if any.
Q2.
Figure Q2 shows part of a concrete floor supported by columns. The building is braced in two orthogonal directions. The clear storey height is 4 m and the effective length factor is 0.85. The interior column at A carries an ultimate axial load of 3200 kN from the beams which are symmetrically arranged. The exterior column at B carries an ultimate axial load of 1700 kN and a moment M, transmitted from the beam spanning between AB. Use $f_{cu} = 35 \text{ N/mm}^2$, $f_y = 460 \text{ N/mm}^2$. Assume a 60 mm cover to the centroid of longitudinal reinforcement.

(a) Determine a square column section at A with a reinforcement ratio of about 0.02. Give your answer to the nearest 25 mm. Design the reinforcement and show the arrangement of bars and links on a sketch of the section.

(7 marks)

(b) Determine the design moment in column B from the simplified sub-frame in Figure Q2. The beam stiffness is 2 times of the column members. The ultimate design load on beam AB is 62 kN/m. Design the reinforcement and show the arrangement of bars and links on a sketch of the section.

What is the maximum clear storey height permitted without reduction of column strength for slenderness effects?

(13 marks)
Q3.
A proposed commercial development comprising a 30-storey tower block and a 6-storey podium block will be built on a site adjacent to an elevated MRT station and viaduct supported on pile foundations and low rise shop-houses on bakau piles. There is no basement planned for this development.

The subsoil conditions from preliminary site investigations are shown in Figure Q3(a). Groundwater table was observed about 1m below the existing ground level.

(a) Evaluate the feasibility of bored piles and driven RC piles for the proposed development, and recommend the most appropriate pile foundation system. Suggest measures to mitigate some of the construction problems you may encounter at the site in view of the proximity to sensitive structures.

(12 marks)

(b) For the plot of effective overburden pressure, p_0', and preconsolidation pressure, p_c', shown in Figure Q3(b), evaluate the degree of consolidation of the marine clay layer under the existing ground conditions, and state whether negative skin friction will act along the pile shaft. Without going into calculations, suggest a penetration depth for your recommended pile foundation system at BH1 and sketch the distribution of axial load along pile shaft.

(8 marks)
Design Information Sheet for Q3

Figure Q3(a) Simplified soil profile

Figure Q3(b) Effective overburden pressure and preconsolidation pressure versus depth
Q4.

(a) A pair of vertical curves are to connect a series of tangent grades for which the slopes are shown in Figure Q4. The middle section is 150 metres long.

![Figure Q4](image)

The following information is provided for design calculation.
- Driver reaction time: 2.5 seconds
- Driver eye height: 1.050 metres
- Tyre-pavement friction coefficient: 0.30
- Object height for stopping: 0.150 metres
- Road design speed: 70 km/h

(i) The required minimum stopping sight distance for motorists is found to be 120.0 metres on the crest curve, and 122.7 metres on the sag curve. Show how the value for the minimum stopping sight distance is obtained for either the crest curve or the sag curve.

(ii) Calculate the minimum length of the crest curve, and the sag curve, that satisfies the respective minimum stopping sight distance. Hence, show that the middle section is too short for the pair of vertical curves to be fully developed.

(10 marks)

(b) A 3-layer flexible pavement is to be constructed using materials with properties given in the following table.

<table>
<thead>
<tr>
<th>Material</th>
<th>Drainage coefficient (m/s)</th>
<th>Layer coefficient (a/s)</th>
<th>SN value above layer (from AASHTO charts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt concrete</td>
<td>impermeable</td>
<td>0.45</td>
<td>not applicable</td>
</tr>
<tr>
<td>Granite aggregate</td>
<td>1.20</td>
<td>0.20</td>
<td>2.3</td>
</tr>
<tr>
<td>Sandy gravel</td>
<td>1.10</td>
<td>0.12</td>
<td>3.3</td>
</tr>
<tr>
<td>Roadbed soil</td>
<td>0.60</td>
<td>0.05</td>
<td>4.3</td>
</tr>
</tbody>
</table>

(i) Compute the thickness of each layer in the flexible pavement.

(ii) List several advantages of a flexible pavement design over that of a rigid pavement.

(10 marks)
Q4. (Cont’d)

LIST OF FORMULAE

Reaction Distance, \(d_r\):

\[d_r = vt_r \]

Braking Distance, \(d_b\):

\[d_b = \frac{v^2}{2g(f \pm G)} \]

Minimum Length (Crest Curve), \(L_{\text{min}}\):

\[L_{\text{min}} = \begin{cases} \frac{AS^2}{200\left(\sqrt{h_1} + \sqrt{h_2}\right)^2} & \text{When } S \leq L \\ 2S - \frac{200\left(\sqrt{h_1} + \sqrt{h_2}\right)^2}{A} & \text{When } S > L \end{cases} \]

Minimum Length (Sag Curve), \(L_{\text{min}}\):

\[L_{\text{min}} = \begin{cases} \frac{AS^2}{200[0.6 + S(\tan 1\degree)]} = \frac{AS^2}{120 + 3.5S} & \text{When } S \leq L \\ 2S - \frac{200[0.6 + S(\tan 1\degree)]}{A} = 2S - \frac{120 + 3.5S}{A} & \text{When } S > L \end{cases} \]

AASHTO Structural Number (SN) Equation:

\[SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3 + ... \]
II Fundamentals Of Engineering Examination (Electrical)

The examination will focus on testing the fundamentals of electrical power engineering. The 6-hour examination will comprise two parts.

Format

- **FEE Part 1 (Electrical) (3 hours & 10 mins) - 40 MCQ questions**
 - EE 101 Principles of Power Engineering

- **FEE Part 2 (Electrical) (3 hours & 10 mins) - 5 out of 7 questions**
 - EE 201 Power System Analysis and Utilization

Syllabus

- **EE 101 Principles of Power Engineering**

 - **Three-phase Circuits and Systems**

 - **Magnetism and Magnetic Circuits**

 - **Transformers**

 - **AC and DC Machines**

 - **Power Electronics and Drives**
 Introduction to power conversion. Harmonics. AC to DC conversion. DC to DC conversion. DC to AC conversion. DC servo motor drive systems. AC variable-speed induction motor drive systems. Permanent magnet and stepping motor drive systems.
- **Fundamental of Power System**

- **Power Flow Modelling**

- **EE 201 Power System Analysis and Utilizations**

 - **Active Power and Frequency Control**

 - **Reactive Power and Voltage Control**
 Production and absorption of reactive power. Methods of voltage control. Reactive power and voltage control devices. Application to transmission and distribution systems.

 - **Analysis of Unsymmetrical Faults**

 - **Electric Power Distribution Systems**

 - **Building Services Engineering**

 - **General Protection Principles**

 - **Applications of High-voltage Engineering**
Recommended Reading List for Electrical Engineering

FEE Part 1 (Electrical)
EE 101 Principles of Power Engineering

FEE Part 2 (Electrical)
EE 201 Power System Analysis and Utilizations

Questions From Past Year Papers for Fundamentals Of Engineering Examination Part 1 (Electrical)

(Actual paper comprises 40 Multiple Choice Questions (MCQ) of 2.5 marks each. Answer all questions.)

1. A three-phase 400-volt source supplies two parallel loads. Load 1 is rated 300 kVA, pf = 0.8 lagging and Load 2 is rated 240 kVA, pf = 0.6 leading. Determine the source line current I_a.

 (a) 646.1 A
 (b) 107.8 A
 (c) 554.5 A
 (d) 201.5 A

2. An ideal single-phase transformer has N_1 = 100 turns, and N_2 = 300 turns. The LV winding is connected to a voltage source operating at 3 kV. An impedance of value Z_2 = 100 + j30 Ω is connected across the HV side of the transformer. Compute the transformed power.

 (a) P = 743.1 kW, Q = 222.9 kVar
 (b) P = 700.1 kW, Q = 210.7 kVar
 (c) P = 690.9 kW, Q = 211.6 kVar
 (d) P = 722.4 kW, Q = 231.4 kVar

3. An open-circuit test is performed on a single-phase 440-V transformer winding. The results are P_in = 100 W, I_in = 1 A and V_in = 440 V. Determine the values of the shunt resistance (R_m) and magnetizing reactance (X_m).

 (a) R_m = 2116 Ω, X_m = 729.9 Ω
 (b) R_m = 5290 Ω, X_m = 137.2 Ω
 (c) R_m = 2116 Ω, X_m = 137.2 Ω
 (d) R_m = 1936 Ω, X_m = 451.8 Ω

4. A 500-kVA single-phase transformer is rated 6.8 kV/115 kV. A short circuit test on the high-voltage side at rated current indicates P_in = 435 W and V_in = 2.5 kV. Determine the winding resistance (R_s) and leakage reactance (X_s) on the high-voltage side.

 (a) R_s = 14.25 Ω, X_s = 574.5 Ω
 (b) R_s = 13.05 Ω, X_s = 312.5 Ω
 (c) R_s = 23.01 Ω, X_s = 312.5 Ω
 (d) R_s = 23.01 Ω, X_s = 574.5 Ω
5. A 25-kW, 250-V d.c. shunt generator has armature and field resistances of 0.06 ohms and 100 ohm respectively. The total armature power developed when working as a motor taking 25 kW input equals:

(a) 26.25 kW
(b) 23.8 kW
(c) 25 kW
(d) 24.4 kW

6. A 460-V series motor runs at 500 rpm taking a current of 40 A. The total resistance of the armature and field is 0.8 ohm. Assuming flux is proportional to the field current, the percentage change in torque when the load is reduced with the motor taking 30 A now can be calculated to be:

(a) 50%
(b) 75%
(c) 43.75%
(d) 56.25%

7. Two generators are supplying a real load of 2.5MW at 0.8 power factor lagging. Generator 1 has a no-load frequency of 51.5 Hz and a slope of the generator’s characteristic of 1MW/Hz. While Generator 2 has a no-load frequency of 51 Hz and a slope of the generator’s characteristic of 1MW/Hz. How much power is supplied by each of the two generators?

(a) 1 MW; 1.5 MW
(b) 1.5 MW; 1 MW
(c) 1.25 MW; 1.25 MW
(d) 2 MW; 0.5 MW

8. The conditions for the parallel operation of synchronous generators require the following parameters:

(a) Line current, phase sequence, frequency, phase angle
(b) Frequency, line voltage, phase sequence, phase current
(c) Phase sequence, frequency, phase angle, line voltage
(d) Power rating, phase sequence, frequency, impedance
9. A large building is taking 3-phase supply from utility at LV i.e. 400 V. After adding capacitors at the intake point of the electrical installation and the power factor at the intake point has been improved from 0.6 lag to 0.9 lag. As a result, the electrical distribution loss in the building is reduced approximately by:

(a) 0%
(b) 10%
(c) 20%
(d) 30%

10. A 1-MVA, 22/0.433-kV transformer is overloaded to 1.125 MVA at a power factor of 0.8 lag. This overloading can be eliminated by adding a capacitor at the LV terminal of the transformer. The minimum capacity of the capacitor should be:

(a) 300 kVAr
(b) 200 kVAr
(c) 150 kVAr
(d) 100 kVAr
Questions From Past Year Papers for Fundamentals Of Engineering Examination Part 2 (Electrical)
(Actual paper comprises 7 questions. Answer 5 questions)

Q1. Two generators operating in parallel supply a load of 5 MW at 0.9 lagging power factor. Gen A has a slope of 5 MW/Hz and Gen B 4 MW/Hz and their no-load frequency settings are 50.4 Hz and 51 Hz respectively.

(a) Find the system frequency and MW supplied by each generator. (13 marks)

(b) Find the reactive power supplied by Gen A if the power factor of Gen B is 0.8 lagging. (7 marks)

Q2. (i) A 6.6kV Main Switch Board of a factory receive 6.6kV supply from Power Grid. The Contract Capacity is at 1500 kW. The table below shows the kWh meter readings of a typical day of the factory in a 24 hours period.

<table>
<thead>
<tr>
<th>Time</th>
<th>Meter Reading (kWh)</th>
<th>Time</th>
<th>Meter Reading (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>0</td>
<td>12:00</td>
<td>3800</td>
</tr>
<tr>
<td>0:30</td>
<td>0</td>
<td>12:30</td>
<td>4200</td>
</tr>
<tr>
<td>1:00</td>
<td>0</td>
<td>13:00</td>
<td>4600</td>
</tr>
<tr>
<td>1:30</td>
<td>0</td>
<td>13:30</td>
<td>5000</td>
</tr>
<tr>
<td>2:00</td>
<td>0</td>
<td>14:00</td>
<td>5400</td>
</tr>
<tr>
<td>2:30</td>
<td>0</td>
<td>14:30</td>
<td>6000</td>
</tr>
<tr>
<td>3:00</td>
<td>0</td>
<td>15:00</td>
<td>6600</td>
</tr>
<tr>
<td>3:30</td>
<td>0</td>
<td>15:30</td>
<td>7400</td>
</tr>
<tr>
<td>4:00</td>
<td>0</td>
<td>16:00</td>
<td>8200</td>
</tr>
<tr>
<td>4:30</td>
<td>0</td>
<td>16:30</td>
<td>8700</td>
</tr>
<tr>
<td>5:00</td>
<td>0</td>
<td>17:00</td>
<td>9200</td>
</tr>
<tr>
<td>5:30</td>
<td>0</td>
<td>17:30</td>
<td>9400</td>
</tr>
<tr>
<td>6:00</td>
<td>0</td>
<td>18:00</td>
<td>9600</td>
</tr>
<tr>
<td>6:30</td>
<td>0</td>
<td>18:30</td>
<td>9700</td>
</tr>
<tr>
<td>7:00</td>
<td>0</td>
<td>19:00</td>
<td>9800</td>
</tr>
<tr>
<td>7:30</td>
<td>50</td>
<td>19:30</td>
<td>9900</td>
</tr>
<tr>
<td>8:00</td>
<td>100</td>
<td>20:00</td>
<td>10000</td>
</tr>
<tr>
<td>8:30</td>
<td>150</td>
<td>20:30</td>
<td>10000</td>
</tr>
<tr>
<td>9:00</td>
<td>200</td>
<td>21:00</td>
<td>10000</td>
</tr>
<tr>
<td>9:30</td>
<td>600</td>
<td>21:30</td>
<td>10000</td>
</tr>
<tr>
<td>10:00</td>
<td>1000</td>
<td>22:00</td>
<td>10000</td>
</tr>
<tr>
<td>10:30</td>
<td>1600</td>
<td>22:30</td>
<td>10000</td>
</tr>
<tr>
<td>11:00</td>
<td>2200</td>
<td>23:00</td>
<td>10000</td>
</tr>
<tr>
<td>11:30</td>
<td>3000</td>
<td>24:00</td>
<td>10000</td>
</tr>
</tbody>
</table>
a) The power factor recorded is at 0.76 lagging. What is the Maximum Demand in 30 mins of the factory? (3 marks)

b) Calculate the monthly utility bill (assume 30 day in month). The tariff of the utility company is,

<table>
<thead>
<tr>
<th>Tariff Type</th>
<th>Charge Per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Usage charge (7am to 11pm)</td>
<td>20 cents / kWh</td>
</tr>
<tr>
<td>Off peak Usage charge (11pm to 7am)</td>
<td>12 cents / kWh</td>
</tr>
<tr>
<td>Contracted Capacity Charge per month</td>
<td>$8 / kW</td>
</tr>
<tr>
<td>Uncontracted Capacity Charge per month</td>
<td>$11 / kW</td>
</tr>
<tr>
<td>Reactive Power Charge</td>
<td>0.6 cents / chargeable kVArh</td>
</tr>
</tbody>
</table>

(5 marks)

A main switch board is supplied from a 22/0.4 kV, 2,000 kVA transformer with an impedance of 6%. The impedance of LV cables to the main switchboard is 0.0005+j0.0012 Ω. The fault level at the intake point at 22 kV is 1,000 MVA, calculate the fault current at main switch board. (12 marks)

Q3.

Figure Q3 shows an incomplete schematic diagram of a protection arrangement for a 115/13.2 kV Dy1 power transformer. The transformer is rated at 25 MVA. Current transformers (CT) ratio is 150/5 A on the 115 kV side and 2250/5 A on the 13.2 kV side.

(a) Complete the three-phase wiring connection from current transformers to the differential relay. Indicate on your completed schematic diagram the current distribution (both magnitude and direction of flow) on the power transformer and in the relay circuit. (14 marks)
(b) A single-phase to earth fault at the middle of the LV winding as indicated in Figure Q3 has resulted in a fault current of 548.7 A. The differential relay is set to operate at 5% of the CT rating. Calculate whether this earth fault could cause the relay to operate. State any assumptions made.

(6 marks)
III Fundamentals Of Engineering Examination (Mechanical)

The examination will focus on testing the fundamentals of mechanical engineering. The 6-hour examination will comprise two parts:

Format

- **FEE Part 1 (Mechanical) (3 hours & 10 mins) - 40 MCQ questions**
 - ME 101 Control and Instrumentations
 - ME 102 Dynamics and Vibrations
 - ME 103 Fluid Mechanics
 - ME 104 Mechanics and Materials
 - ME 105 Manufacturing Technology
 - ME 106 Thermodynamics and Heat Transfer

- **FEE Part 2 (Mechanical) (3 hours & 10 mins) - 5 out of 7 questions**
 - ME 201 Control and Instrumentations
 - ME 202 Dynamics and Vibrations
 - ME 203 Fluid Mechanics
 - ME 204 Mechanics and Materials
 - ME 205 Manufacturing Technology
 - ME 206 Thermodynamics and Heat Transfer

Syllabus

- **ME 101/201 Control And Instrumentations**
 - **Modelling of Linear Systems**
 Introduction to control systems. Mathematical modelling of electromechanical systems. Transfer functions representation of physical components. Block diagram manipulation.

 - **Dynamic Response Analysis**
 Transient response analysis and performance indices. Poles and zeros concept, dominant pole concept of high order systems. Characteristic equation. Steady state errors and system types.

 - **Principles of Feedback Control**

 - **Root Locus Techniques**
 Qualitative analysis of the Root Locus. Guidelines for sketching a Root Locus. General concepts of dynamics compensator design. Design

- **Frequency Domain Analysis**

- **Measurement System**
 Models and classification for measurement systems and their time and frequency domain behaviours. Performance specifications.

- **Analog Devices and Measurement**
 Introduction to basic measurement devices for analog signals and measurement principles. Conditioning of analog signals for transmission and processing.

- **Digital Devices and Measurement**
 Fundamental differences between analog and digital systems. Sampling theorem and fundamentals of data acquisition.

- **Sensors**
 Measurement for common engineering applications: position, speed, stress, strain, temperature, vibration and acceleration, pressure and flow. Semiconductor sensors and micromechanical devices.

- **ME 102/ 202 Dynamics And Vibrations**

 - **Dynamics**

 Kinematics of Particle
 Uniform rectilinear motion; Uniform accelerated rectilinear motion; Rectangular components of velocity and acceleration; Motion relative to a frame in translation; Tangential and normal components; Radial and transverse components. Newton’s second law; Equations of motion; Angular momentum of a particle; Principle of conservation of energy; Principle of conservation of momentum.

 Kinematics of Rigid Bodies
 General plane motion; Coriolis acceleration. Equations of plane motion for a rigid body; Angular momentum of a rigid body in plane motion; Principle of work and energy for a rigid body; Principle of impulse and momentum for the plane motion of a rigid body; Conservation of angular momentum.

 - **Mechanical Vibrations**

 Vibration Without Damping
Simple harmonic motion; Energy method; forced vibration.

Damped Vibration
Damped free vibration; Damped forced vibration.

- **ME 103/203 Fluid Mechanics**
 - **Basic concepts**

 - **Fluid Motion**
 Real and ideal fluids. Momentum and forces in fluid flow: Continuity equation, momentum equation, energy equation, Bernoulli’s equation.

 - **Pipe Flow**

 - **Fluid Machinery**

 - **Flow Resistance and Propulsion**

- **ME 104/204 Mechanics And Materials**

 - **Material properties and behaviour**
 Yield and ultimate tensile stress, proof stress, elastic modulus. Yield and Strength failure criteria- Tresca and Von-Mises.

 - **Stress and Strain**
 Basic stress and strain for elastic bodies- direct stress and strain, shear stress and strain, Mohr’s circle. Stress and Strain
transformations - two and three-dimensional, 4 elastic constants E, ν, k and G.

- **Bending of beams**

- **Bending of plates and cylindrical shells**
 Symmetric membrane bending theory of circular plates and shells under fixed and freely supported boundaries. Discontinuity stresses of cylinder to flat, cone or hemispherical shells junctions.

- **Torsion of prismatic bars and closed sections**
 Torsion of circular solid section and open thin walled sections, shear stresses and deformation, shear flow in thin walled open and closed sections.

- **Buckling of columns**
 Euler buckling theory, perfect and imperfect columns, effect of end fixings on critical buckling loads.

- **Thermal loading**
 Thermal stresses in beams and cylinders due to a through thickness temperature gradient, thermal stresses in compound bars of different materials under uniform temperature.

- **Internal pressure loading**
 Membrane theory, thin and thick walled cylinders under pressure.

- **ME 105/205 Manufacturing Technology**

 - **Introduction**

 - **Metal Removal**
 Introduction to machine tools and machining operations – Generating motions of machine tools, machines using single point tools, machines using multipoint tools, machines using abrasive wheels. Mechanics of metal cutting – Chip formation, forces acting on the cutting tool and
their measurement, the apparent mean shear strength of the work material, chip thickness, friction in metal cutting. Cutting tool materials – Major tool material types. Tool life and tool wear – Forms of wear in metal cutting. Economics of metal cutting operations – Choice of feed, speed and depth of cut, tool life for minimum cost and minimum production time, estimation of factors needed to determine optimum conditions.

- **Metrology**
 Basic measuring instruments and their applications (Linear and angular measurement, roundness, flatness and surface finish measurement).

- **Manufacturing Processes**

- **ME 106/206 Thermodynamics And Heat Transfer**

 - **Thermodynamics**

 Fundamental concepts
 Simple concept of thermodynamic system. Types of energy interaction between system and surroundings. Properties of simple pure substances – understand the general form of property diagrams. Empirical temperature scales and thermometry. Ideal and perfect gases. Use of steam tables for substance such as water.

 First Law of Thermodynamics
 The concept of fully-resisted or quasi-static processes; work and heat interactions in adiabatic boundaries with the introduction of internal energy, kinetic, potential and enthalpy. Statement of the
First law of Thermodynamics: applications relating to non-flow and simple unsteady flow (e.g., the filing of a rigid vessel) processes. First law applied to simple thermodynamic plants, e.g. power plant, compressors and expanders (without detailed knowledge of plant construction). Steady flow energy equation and its application to demonstrate the significant of enthalpy changes.

Second Law of Thermodynamics

- **Heat Transfer**

 Conduction

 Convection

 Radiation
 Heat transfer by radiation. Laws of radiant heat transfer, black and gray bodies, geometric factors, absorptivity.
Questions From Past Year Papers for Fundamentals Of Engineering Examination Part 1 (Mechanical)
(Actual paper comprises 40 Multiple Choice Questions (MCQ) of 2.5 marks each. Answer all questions.)

1. A rectangular wooden fin of cross section 200 mm by 600 mm protrudes from the bottom of a motor boat moving at 5 m/s. What is the maximum pressure on the fin? Density of water is 1000 kg/m³.

 (a) 2.50 kPa
 (b) 5.00 kPa
 (c) 12.50 kPa
 (d) 25.00 kPa

2. A pump is required to deliver 0.5 m³/s of cooling water through a pipe of 75-mm diameter to a heat engine which is 200 m away from and 2 m higher than the pump. Density of water is 1000 kg/m³. What is the power of the pump?

 (a) 1000 W
 (b) 4905 W
 (c) 9810 W
 (d) 19620 W

3. The main reason for incorporating an air pre-heater in the furnace of a steam power plant is

 (a) to have a complete combustion in the furnace
 (b) to decrease the humidity of air in the exhaust flue gases
 (c) to minimize the energy input to the combustion process
 (d) to maximize the waste heat rejection in the exhaust

4. In a stoichiometric combustion, the air to fuel ratio is

 (a) below the user defined value
 (b) higher than its natural ability to burn
 (c) the chemically correct value
 (d) a burning scenario when the flame is seen to be yellow in colour
5. The coefficient of performance (COP) of a vapour compression chiller is characterized by its cooling capacity. At low cooling rates, the chiller COP is reduced by the effects of heat leaks to the environment. On the other hand, at high cooling rates, the chiller suffers from

(a) the high vibration of the major moving parts
(b) the inefficient operation of the expansion device
(c) the high mass leaks in the vapour compression machine
(d) the finite-rate of heat transfer and fluid friction losses of the working fluid

6. Which of the following statement is correct?

(a) Tool life increases with the increase of cutting speed
(b) Tool life decreases with the increase of cutting speed
(c) Cutting speed has no influence on tool life
(d) None of the above

7. Consider the unity-feedback control system with the following open-loop transfer function:

\[G(s) = \frac{10}{s(s-1)(2s+3)} \]

It is:
(a) stable
(b) unstable
(c) marginally stable
(d) conditionally stable

8. Referring to the system shown below, determine the values of \(K \) and \(k \) such that the system has a damping ratio \(\zeta \) of 0.7 and an undamped natural frequency \(\omega \) of 4 rad/sec.

(a) 16, 0.225
(b) 4, 0.225
(c) 16, 0.05
(d) None of the above
9. Design a solid shaft to transmit 200 KW at 75 rpm without exceeding a shearing stress of 43 MPa.

 (a) 54.8mm
 (b) 72mm
 (c) 0.144mm
 (d) 144mm

10. A beam having a rectangular section of 100mm width by 150mm depth is subjected to a positive bending moment of 16 KNm acting about the horizontal axis. Find the bending stress acting at the section 25mm above the neutral axis.

 (a) 114.22 MPa
 (b) 72.11 MPa
 (c) 0.114 MPa
 (d) 28.44 MPa
Questions From Past Year Papers for Fundamentals Of Engineering Examination Part 2 (Mechanical)
(Actual paper comprises 7 questions. Answer 5 questions.)

Q1.
A combined cycle power plant comprises a natural gas fired, ideal gas-turbine topping cycle and a bottoming steam-generator for the steam turbine. The air inlet pressure and temperature to the gas turbine, which has a pressure compression ratio of 8, are 1 bar and 300K, respectively. The temperature of burned gases from the combustor to the turbines is 1400K and the flue gas temperature leaving the steam generator (heat exchanger) is 520K. The bottoming cycle of the power plant is an ideal reheat Rankine cycle where the steam pressure and temperature supplied to the high pressure steam turbines are 150 bar and 450 C. Additional natural gas is fired for the reheating of steam and the conditions of reheated steam supplied to low-pressure turbine stage are 30 bar and 500o C, respectively.

(a) For the stated steady state conditions, sketch the combined cycle on a T-s diagram.

(b) Using the thermodynamic properties of air and steam from the Tables, determine;

(i) the mass flow rate of air in the gas turbine cycle if the steam generation rate is 30 kg/s,
(ii) the rate of total heat input, and
(iii) the thermal efficiency of the combined cycle.

State all assumption made in the solution.

Q2.
A solid aluminium shaft 1.0m long and 50mm diameter is to be replaced by a tubular steel shaft of the same length and same outer diameter so that either shaft could carry the same torque and have the same angle of twist over the total length (that is having the same torsional stiffness).

Calculate the inner diameter of the tubular steel shaft.

The following properties of steel and aluminium can be used in your calculation. Steel, G_s = 84 GPa, Aluminium G_a = 28 GPa.)
Q3.
A mercury-in-bulb thermometer is immersed into a bath of temperature \(T_i \), and the mercury level in the stem of radius \(r_s \) rises by a finite height \(X_o \). If the bulb has a radius \(r_b \), and the overall heat transfer coefficient between the bulb and the fluid of the bath is \(U \), show that the energy balance equation for the temperature of mercury in the bulb \(T_b \) is given by

\[
\rho CV_b \left(\frac{dT_b}{dt} \right) = UA_b(T_i - T_b)
\]

where \(\rho \) is the density of mercury in the bulb, \(C \) is the specific heat, \(A_b \) is the surface area of the bulb. Assuming that the expanded mercury of the bulb \((\beta V_b T) \) is equal to the change of the mercury volume in the stem \((X_o A_s) \), demonstrate that the output variable \((X_o) \) to the input variable \((T_i) \) can be expressed as

\[
\left[\frac{\rho CV_b}{UA_b} \right] \left(\frac{dX_o}{dt} \right) + X_o = \left[\frac{\beta V_b}{A_s} \right] T_i
\]

where \(A_s \) is the cross section area of the hollow stem of thermometer. Using the operator D or equivalent, demonstrate that the thermometer can be expressed as a 1st order transfer function in terms of \(X_o \) to \(T_i \) as;

\[
(\tau D + 1)X_o = K T_i
\]

Hence, show that \(K = \frac{\beta V_b}{A_s} \), a constant and \(\tau = \frac{\rho CV_b}{UA_b} \) is the time constant of the thermometer.

Write down the general solution of the output variable, \(X_o \). Sketch the expected behavior of the thermometer over a finite non-dimensional time internals, \(t/\tau \), say from 0 to 5.

(12 marks)

A mercury-in-bulb master thermometer is designed with a bulb radius of 1.6 mm whilst the ratio of the hollow stem to bulb radii is 0.07. If the overall heat transfer coefficient between the thermometer and the bath fluid is 800 W/m\(^2\).K, show that:

(i) the time constant \((\tau) \) of the thermometer is about 4 s,

(ii) the ratio of thermometer constant \((K) \) to the volumetric expansion coefficient of mercury \((\beta) \) is about 0.1.

The following properties of mercury can be used in your calculation: Density \((\rho) \) and specific heat \((C) \) of mercury are 13500 kg/m\(^3\) and 140 J/kg.K, respectively.

(8 marks)